An embryo-derived peptide signal directs endosperm polarity in Arabidopsis
Angiosperm seed formation requires the coordinated development of the products of double fertilization, the embryo and the endosperm. The endosperm mediates efficient nutrient transfer from surrounding maternal tissues to the developing embryo. This function requires a polarized tissue organization, which manifests as early polar gene expression and polar cellularization dynamics. We show that the receptor kinase HAIKU2 acts in coordination with the transcription factor WRKY10/MINISEED3 to ensure robust endosperm polarity establishment through the activity of the homeodomain transcription factors WUSCHEL-RELATED HOMEOBOX 8 and 9. This process depends on egg cell fertilization and is mediated through the peptide PATHOGEN-INDUCED PEPTIDE-LIKE 7, which acts as a HAIKU2 ligand. Our results reveal how a molecular paracrine dialogue between the embryo and endosperm ensures optimal seed developmental coordination.