Structural basis for heat tolerance in plant NLR immune receptors
Nucleotide-binding leucine-rich repeat (NLR) immune receptors sense pathogen molecules and oligomerize, initiating defense signaling. Some NLRs function poorly at elevated temperatures for unknown reasons. We show that temperature-sensitive NLRs retain ligand binding at elevated temperatures but are impaired in oligomerization. We identify key residues involved in temperature resilience. Structural modeling reveals stabilizing intramolecular interactions of the NB-ARC domain with surface residues of the adjacent leucine-rich repeat (LRR) that preserve receptor integrity and functionality under heat stress. These insights enable in silico classification of NLRs as temperature-sensitive or -tolerant and underpin design of temperature tolerant variants of temperature sensitive NLRs.
These findings provide a mechanistic basis for temperature sensitivity in plant immune receptors and enable engineering of temperature-tolerant disease resistance in crops.