Diploid potato lines for the study and improvement of starch metabolism and structure

Diploid potato breeding enables faster genetic improvement via selection against deleterious alleles in inbred lines, unlike breeding by intercrossing tetraploid varieties. Starch is the major source of calories in potato tubers, but the starch properties of diploid lines have rarely been reported. In this study, we provide a comprehensive characterisation of tuber and starch properties in two diploid lines that are early isolates from the Solynta breeding program, B26 and B100, and their F1 hybrids. B100 produced fewer, but larger tubers compared to B26, and both diploid lines produced tubers that are smaller than the tetraploid variety, Clearwater Russet. The low tuber yield of B100 correlates with its high self-compatibility and fruit production. Pruning of fruits in B100 significantly increased total tuber yield per plant by stimulating more tuber initiations, but had no effect on average tuber weight, starch content or starch structure. Among the diploid, hybrid and tetraploid lines examined, there were no differences in the total starch content of tubers. Although amylopectin structure and amylose content were similar between the two diploid lines and the tetraploid comparison, B26 had elevated levels of resistant starch and a striking elongated granule morphology. Our results showcase the variation in source-sink relations and starch structure in diploid potato breeding material, demonstrating their potential for research into the genetics underpinning metabolic and quality traits.